谷超豪使用歸納法證明
為什麼不能用歸納法證明?
因為設立命題時使用少量樣本歸納出來的,再用少量樣本證明,就不可靠了。少量樣本歸納證明只是增加了命題的可信度,不能證明整個理論的正確,這就是歸納證實的局限性。
因為歸納法沒有充足理由僅僅依靠少量樣本概括由無窮多個元素組成全稱判斷命題的屬性。
舉例哥德巴赫猜想:
原始信息(6=3+3,8=3+5,..。就是逐一歸納有限的樣本,具有某種性質(兩個素數之和),於是歸納推出“哥德巴赫猜想”推導出數量有無窮多個的樣本也具有某種性質)。
在歸納基礎上產生的猜想,通過演繹證明是不對等的。
歸納是在一個有窮大的樣本中逐一列舉, 只要樣本空間沒有被窮盡, 使用的都是簡單枚舉歸納推理。
對於無窮大的樣本, 我們根本不可能窮盡該樣本空間, (例如哥德巴赫猜想中的偶數就有無窮多個)因此只能使用簡單枚舉歸納推理,簡單枚舉歸納推理是一種擴大前提的推理, 它的結論是不可靠的。
使用歸納推理提出假說, 其假說是非常脆弱的, 因為對它的證實是不可能的, 除非你窮盡樣本空間, 而一旦如此, 你使用的已經不是歸納推理了。
它的脆弱性還表現在, 只要一個反例, 就可以容易地推翻這個假說。
歸納推理是基於有限觀察的,從有限樣本推出一般結論的推理, 它的前提是關於個別事物具有某種性質的論斷, 結論卻試圖得出全體事物皆具有此性質的論斷,中間有一個巨大的邏輯空擋。
無窮多個樣本的數學定理必須是全稱判斷,數學家必須完成一個:由歸納出來的有限個事實樣本去證實無窮多個元素的--不可能完全證實的命題進行演繹方法證明,並且結論是全稱肯定判斷的正確三段論只能是第一格的AAA式。這是絕大多數數學命題證明無法做到的。
谷超豪思維混亂,完全沒有邏輯學常識,所有的論文都是錯誤的(就是說,沒有一篇論文是正確的)


吳文俊機器證明數學定理
吳文俊是首位中國國家最高科學獎的得主,因為在數學機械化方面的謊言。
那麼什麼是數學機械化呢?
就是用計算機完成數學的方程計算和命題證明。
計算機解方程早已不是新聞。
計算機證明研究在2006年結束。
機器證明數學定理已經失敗。因為:
因為,目前命題邏輯還有許許多多的問題沒有解決,是不可能對複雜問題進行證明的。
為什麼機器證明數學定理是荒唐的?
首先,所有的數學定理全部都是全稱判斷,即“一切A是B”。。
其次,所有的全稱判斷的主項都是“普遍概念”或者“單獨概念”。
第三,普遍概念的定義就是依據事物的屬性。
有屬性的定理只能夠來自演繹推理,即三段論的形式。(形式)。
第四,機器不能判定屬性。例如判定一個人的性別是生物化學的工作,即染色體xx是女人,xy是男人。
機器證明數學命題本質就是—人工智障!而機器僅能執行符號操作,
無法理解屬性背後的語義.
吳文俊歸納法證明

吳文俊大腦裡面如果還殘存一絲絲智商,就不會搞機器證明數學定理。
中國數學界就是一群烏合之眾。