设万维读者为首页 广告服务 联系我们 关于万维
简体 繁体 手机版
分类广告
版主:诤友
万维读者网 > 教育学术 > 帖子
在哲学光辉下成长的数学大师希尔伯特
送交者: 44 2002年04月28日23:01:02 于 [教育学术] 发送悄悄话



  大卫·希尔伯特(David·Hilbert,1862~1943)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。

  在哲学光辉下成长的数学大师

  希尔伯特出生在东普鲁士的柯尼斯堡城郊外。他的童年和青年都是在柯尼斯堡度过的。柯尼斯堡是德国著名哲学家康德的故乡和工作、执教过的地方,具有浓郁的理性主义传统。像该市所有的孩子一样,希尔伯特的成长也深受康德传统的抚育。希尔伯特的母亲爱好哲学。每年康德诞辰纪念日,希尔伯特都要陪伴母亲去教堂瞻仰康德的半身塑像,一字一句地拼读圣堂墙上康德的格言:“世界上最奇妙的是我头上的灿烂星空和我内心的道德准则。”理性地探索奇妙的灿烂星空便成了希尔伯特的终生愿望。

  18岁时,希尔伯特进入柯尼斯堡大学攻读数学。他在大学学习数学的同时,也学习康德哲学。1884年他博士论文答辩的第二个论题就是“论康德哲学”。他对康德哲学的准确理解,对其合理性和局限性的深刻分析,博得了评委们的一致好评。他一生中多次表明,康德哲学思想渗透到他的数学研究活动之中。23岁时,希尔伯特获得了博士学位。大学毕业后他曾赴莱比锡、巴黎等地作短期游学,访问了众多的著名数学家。1886年获柯尼斯堡大学讲师资格,1892年任副教授,1893年任正教授。1895年转任格丁根大学数学教授,直至1930年退休。

  希尔伯特是20世纪的数学大师,研究成果博大精深,领域涉及代数不变量、代数数域、几何基础、变分法与积分方程和数学基础等,享有很高的学术声誉。1910年,他荣获匈牙利科学院第二届波尔约奖,1902年起一直任有影响的德国《数学年刊》主编。他还是许多国家科学院的荣誉院士。

  由于希尔伯特的杰出贡献,德国政府授予了他“枢密顾问”的称号。在他六十八岁那年,柯尼斯堡市政会授予了他“荣誉市民”称号。

  希尔伯特毕生投身与数学研究。在他去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。

  理性的洞察力

  希尔伯特的一生都充满了理性的精神。在柯尼斯堡市政会授予他“荣誉市民”称号的仪式上,希尔伯特作了“认识自然和逻辑”的著名演说。他从宣布“认识自然和生命是我们的最高任务”的论题开始,论及到自然客体、经验事实、逻辑思维、理论表述在人类认识自然中的地位和作用,人类认识自然的途径、机制和法则,以及数学在认识自然中的地位。希尔伯特的演说,充满着哲理,闪烁着理性地看待自然的光辉,引人入胜,感染着众多的听众。

  希尔伯特在数学研究中的理性精神,充分表现在他对“数学问题”在数学研究活动中的作用和地位的认识上。历史上众多的数学家整天忙于解决数学问题,但常常对数学问题本身的认识论问题缺乏反思。1888年希尔伯特成功地解决了代数不变量中的“哥尔丹问题”,1898年又成功地解决了变分法中的“狄利克雷原理问题”。这两个问题都是当时著名的数学难题,它们的解决对数学这两个分支领域的发展起了积极的作用。希尔伯特切身地体验到:重大的个别问题是数学的活的血液;单个重大问题的解决,其意义远远超出了问题的本身。接着,他对数学问题的一般认识论意义进行了深刻的反思。1900年他被特邀在巴黎第二届国际数学家大会上作了“数学问题”的演说。在这篇著名的演说中,他论述了“数学问题对数学发展的推动作用”,论述了“数学问题产生的源泉”,论述了“解答数学问题的一般要求和途径”等认识论和方法论问题。接着,他在总结19世纪数学研究成果和发展趋势的基础上,在世纪之交向全世界的数学家们提出了“二十三个数学问题”,他认为这些问题可能是20世纪数学领域中最活跃、最关键、最有影响的课题。20世纪以来数学发展的历史表明,这些问题涉及到现代数学的许多重要领域,引起了数学界持久的关注,对20世纪数学发展的确起了重要的指导作用。不管哪位数学家,若能解决其中一个问题,就能在数学家共同体内获得一个荣誉地位。

  挽救数学危机

  希尔伯特在数学研究中的理性精神,还充分表现在他关于数学基础研究中“形式主义数学哲学思想”的创立。

  19世纪80年代,数学家创立了集合论,并将整个数学建立在集合论的基础之上。但是,当人们试图证明集合论的相容性时,发现集合论中存在着悖论,也就是说集合论是自相矛盾的。于是数学基础陷入了深深的危机。

  面对这种危机,希尔伯特理性地认识到:“必须承认,在这些悖论面前,我们目前所处的情况是不能长期忍受下去的。”“在数学这个号称可靠性和真理性的模范里,每一个人所学的、教的和应用的那些概念结构和推理方法竟会导致不合理的结果。如果甚至于数学思考也失灵的话,那么应该到哪里去寻找可靠性和真理性呢?”

  当这种危机来临时,一些数学家甚至是著名的数学家放弃了自己传统数学的观点,并退出了数学基础研究的战场;还有一些数学家主张对传统数学进行严厉的批判,禁止使用数学中的一些重要概念(如“实无限”)、重要定理(如与“选择公理”等价的定理)和常用推理方法(如“排中律”)。

  与上述两种人的做法不同,希尔伯特试图理性地寻找一条完全令人满意的解除危机的道路,它既能绕过这些悖论,又不致于大量地排斥传统数学的内容。他在总结自己数学研究经验的基础上,于1925年提出了一个解决数学基础危机的方案:以形式化、公理化为基础(即先将一个数学理论形式化、公理化,将它组织在一个形式公理化的系统之中),以有限立场的推理方法为工具,去证明该数学理论的相容性;一旦这种证明得以完成,就说明该数学理论的基础绝对牢固。这就是现代数学基础研究活动中的“形式主义数学哲学思想”,它是由希尔伯特率先提出来的。

  1934年和1939年希尔伯特与他的学生贝尔奈斯合著的《数学基础》第1卷、第2卷出版了。在这部名著中,他把形式主义数学哲学思想在可能的范围内付诸数学研究的实际,取得了可观的成果。

0%(0)
0%(0)
标 题 (必选项):
内 容 (选填项):
实用资讯
回国机票$360起 | 商务舱省$200 | 全球最佳航空公司出炉:海航获五星
海外华人福利!在线看陈建斌《三叉戟》热血归回 豪情筑梦 高清免费看 无地区限制
一周点击热帖 更多>>
一周回复热帖