王小寶拋擲了n+1枚均勻的硬幣,李小芳拋擲了n枚均勻的硬幣。 |
送交者: zhf 2019年02月23日08:17:26 於 [靈機一動] 發送悄悄話 |
王小寶拋擲了n+1枚均勻的硬幣,李小芳拋擲了n枚均勻的硬幣。問:王小寶拋出的硬幣中,得到“正面”向上的次數,比李小芳拋出的硬幣中“正面”向上次數多的概率是多少? 設王小寶正面向上的次數為K,李小芳正面向上的次數為M。 P(K> M) = S(k=1,n+1)[P(K> M| K=k)C(n+1,k)(0.5)^(n+1)= 0.5^(n+1) S(k=1,n+1)[P(k > M)C(n+1,k)] = 0.5^(n+1) S(k=1,n+1)[C(n+1,k) S(m=0,k-1)[C(n,m)0.5^n]]= 0.5^(2n+1) S(k=1,n+1)[C(n+1,k) S(m=0,k-1)[C(n,m)]] (1) 令r = S(k=1,n+1)[C(n+1,k) S(m=0,k-1)[C(n,m)]] r = C(n+1,0) [0 ] + C(n+1,1) [0 + C(n,0) ] + C(n+1,2) [0 + C(n,0) + C(n,1) ] + ... C(n+1,n) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) ] + C(n+1,n+1)[0 + C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n) ] (2) 根據牛頓二項式係數的對稱性, r = C(n+1,0) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n) ] + C(n+1,1) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) ] + ... C(n+1,n) [0 + C(n,0) ] + C(n+1,n+1)[0 ] (3) r = C(n+1,0) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + C(n+1,1) [0 + C(n,1) + ... + C(n,n-1) + C(n,n)] + ... C(n+1,n) [0 + + C(n,n)] + C(n+1,n+1)[0 ] (4) (2) + (4) 得 2r = C(n+1,0) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + C(n+1,1) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + ... C(n+1,n) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + C(n+1,n+1) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)]
= (1+1)^(n+1)(1+1)^n = 2^(2n+1) r = 2^(2n) (5) (5) 代入(1)得 P(K> M) = 0.5^(2n+1) 2^(2n) =1/2 |
|
|
|
實用資訊 | |