王小宝抛掷了n+1枚均匀的硬币,李小芳抛掷了n枚均匀的硬币。 |
送交者: zhf 2019年02月23日08:17:26 于 [灵机一动] 发送悄悄话 |
王小宝抛掷了n+1枚均匀的硬币,李小芳抛掷了n枚均匀的硬币。问:王小宝抛出的硬币中,得到“正面”向上的次数,比李小芳抛出的硬币中“正面”向上次数多的概率是多少? 设王小宝正面向上的次数为K,李小芳正面向上的次数为M。 P(K> M) = S(k=1,n+1)[P(K> M| K=k)C(n+1,k)(0.5)^(n+1)= 0.5^(n+1) S(k=1,n+1)[P(k > M)C(n+1,k)] = 0.5^(n+1) S(k=1,n+1)[C(n+1,k) S(m=0,k-1)[C(n,m)0.5^n]]= 0.5^(2n+1) S(k=1,n+1)[C(n+1,k) S(m=0,k-1)[C(n,m)]] (1) 令r = S(k=1,n+1)[C(n+1,k) S(m=0,k-1)[C(n,m)]] r = C(n+1,0) [0 ] + C(n+1,1) [0 + C(n,0) ] + C(n+1,2) [0 + C(n,0) + C(n,1) ] + ... C(n+1,n) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) ] + C(n+1,n+1)[0 + C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n) ] (2) 根据牛顿二项式系数的对称性, r = C(n+1,0) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n) ] + C(n+1,1) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) ] + ... C(n+1,n) [0 + C(n,0) ] + C(n+1,n+1)[0 ] (3) r = C(n+1,0) [0 + C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + C(n+1,1) [0 + C(n,1) + ... + C(n,n-1) + C(n,n)] + ... C(n+1,n) [0 + + C(n,n)] + C(n+1,n+1)[0 ] (4) (2) + (4) 得 2r = C(n+1,0) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + C(n+1,1) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + ... C(n+1,n) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)] + C(n+1,n+1) [C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n)]
= (1+1)^(n+1)(1+1)^n = 2^(2n+1) r = 2^(2n) (5) (5) 代入(1)得 P(K> M) = 0.5^(2n+1) 2^(2n) =1/2 |
|
|
|
实用资讯 | |