弓形面积的近似计算公式解答 |
送交者: 粱远声 2010年07月16日08:07:40 于 [灵机一动] 发送悄悄话 |
设弓形的底为 b, 高为 h 。有个弓形面积的近似计算公式是
S = 2bh/3 + h^3/(2b) 这个公式是怎么推导出来的呢? 解: 假设 h << b 圆的半径 R = (b^2+4h^2)/(8h) (1) R-h = (b^2-4h^2)/(8h) (2) 弓形方程 y = R(1-(x/R)^2)^0.5 - (b^2-4h^2)/(8h) (3) 弓形面积 S = 2Int(0,b/2)[ydx] = 2RInt(0,b/2)[(1-(x/R)^2)^0.5dx] - (b^3-4bh^2)/(8h) = 2RInt(0,b/2)[1-(x/R)^2/2 - (x/R)^4/8]dx - (b^3-4bh^2)/(8h) = bR -(b/2)^3/(3R) - (b/2)^5/(20R^3) - (b^3-4bh^2)/(8h) = (b^3+4bh^2)/(8h) -(b/2)^3/(3R) - (b/2)^5/(20R^3) - (b^3-4bh^2)/(8h) = bh - hb^3/(3(b^2+4h^2)) - b^5/(20R^3 2^5) = bh - hb/(3(1+4h^2/b^2)) - b^5/(20R^3 2^5) = bh - (hb/3)(1-4h^2/b^2+16h^4/b^4) - b^5/(20R^3 2^5) = 2bh/3 + 4h^3/(3b)-16h^5/(3b^3) - 4h^3/(5b(1+4h^2/b^2)) = 2bh/3 + 4h^3/(3b)-16h^5/(3b^3) - 4h^3/(5b) = 2bh/3 + 8h^3/(15b)-16h^5/(3b^3) S = 2bh/3 + 8h^3/(15b)-16h^5/(3b^3) (4) 如果忽略高次项, S = 2bh/3 + 8h^3/(15b) (5) 为了方便记忆,考虑到高次项是负的,把第二项减小成 8h^3/(16b) 这样,我们就得到 S = 2bh/3 + h^3/(2b) |
|
|
|
实用资讯 | |