Relativity and absolutism | |||||||||||||||
送交者: jingchen 2023年11月24日07:09:34 於 [海 二 代] 發送悄悄話 | |||||||||||||||
Relativity and absolutism
Under relativity, time and space become relative; but speed of light becomes absolute. Is it an overall improvement?
Special relativity was developed to resolve an inconsistency. But the introduction of special relativity created its own inconsistencies, such as twin paradox. The official position is that the paradox has been resolved due to acceleration. Is it true?
Suppose the time difference between the twins in a particular journey is k. Then the amount is attributed to the acceleration process. We can double the distance of travel. Then the time difference will be 2k. However, the acceleration process, turn around process and deacceleration process is identical. The amount of time attributed to acceleration must be k as well. This can’t account for the 2k time difference.
Overall, special relativity is a theory of uniform inertial motion. It is unrelated to acceleration. The acceleration processes only have transient influence on time dilation. But the magnitude of time dilation is linear with scale.
The first step toward resolving an inconsistency is to acknowledge the existence of the inconsistency.
The following is copied from Wikipedia on the resolution of twin paradox https://en.wikipedia.org/wiki/Twin_paradox
Specific example[edit] Consider a space ship traveling from Earth to the nearest star system: a distance d = 4 light years away, at a speed v = 0.8c (i.e., 80% of the speed of light). To make the numbers easy, the ship is assumed to attain full speed in a negligible time upon departure (even though it would actually take about 9 months accelerating at 1 g to get up to speed). Similarly, at the end of the outgoing trip, the change in direction needed to start the return trip is assumed to occur in a negligible time. This can also be modelled by assuming that the ship is already in motion at the beginning of the experiment and that the return event is modelled by a Dirac delta distribution acceleration.[19] The parties will observe the situation as follows:[20][21] Earth perspective[edit] The Earth-based mission control reasons about the journey this way: the round trip will take t = 2d/v = 10 years in Earth time (i.e. everybody on Earth will be 10 years older when the ship returns). The amount of time as measured on the ship's clocks and the aging of the travelers during their trip will be reduced by the factor , the reciprocal of the Lorentz factor (time dilation). In this case α = 0.6 and the travelers will have aged only 0.6 × 10 = 6 years when they return. Travellers' perspective[edit] The ship's crew members also calculate the particulars of their trip from their perspective. They know that the distant star system and the Earth are moving relative to the ship at speed v during the trip. In their rest frame the distance between the Earth and the star system is α d = 0.6 × 4 = 2.4 light years (length contraction), for both the outward and return journeys. Each half of the journey takes α d / v = 2.4 / 0.8 = 3 years, and the round trip takes twice as long (6 years). Their calculations show that they will arrive home having aged 6 years. The travelers' final calculation about their aging is in complete agreement with the calculations of those on Earth, though they experience the trip quite differently from those who stay at home. Conclusion[edit]
No matter what method they use to predict the clock readings, everybody will agree about them. If twins are born on the day the ship leaves, and one goes on the journey while the other stays on Earth, they will meet again when the traveler is 6 years old and the stay-at-home twin is 10 years old. Resolution of the paradox in special relativity[edit] The paradoxical aspect of the twins' situation arises from the fact that at any given moment the travelling twin's clock is running slow in the earthbound twin's inertial frame, but based on the relativity principle one could equally argue that the earthbound twin's clock is running slow in the travelling twin's inertial frame.[22][23][24] One proposed resolution is based on the fact that the earthbound twin is at rest in the same inertial frame throughout the journey, while the travelling twin is not: in the simplest version of the thought-experiment, the travelling twin switches at the midpoint of the trip from being at rest in an inertial frame which moves in one direction (away from the Earth) to being at rest in an inertial frame which moves in the opposite direction (towards the Earth). In this approach, determining which observer switches frames and which does not is crucial. Although both twins can legitimately claim that they are at rest in their own frame, only the traveling twin experiences acceleration when the spaceship engines are turned on. This acceleration, measurable with an accelerometer, makes his rest frame temporarily non-inertial. This reveals a crucial asymmetry between the twins' perspectives: although we can predict the aging difference from both perspectives, we need to use different methods to obtain correct results. Role of acceleration[edit] Although some solutions attribute a crucial role to the acceleration of the travelling twin at the time of the turnaround,[22][23][24][25] others note that the effect also arises if one imagines two separate travellers, one outward-going and one inward-coming, who pass each other and synchronize their clocks at the point corresponding to "turnaround" of a single traveller. In this version, physical acceleration of the travelling clock plays no direct role;[26][27][19] "the issue is how long the world-lines are, not how bent".[28] The length referred to here is the Lorentz-invariant length or "proper time interval" of a trajectory which corresponds to the elapsed time measured by a clock following that trajectory (see Section Difference in elapsed time as a result of differences in twins' spacetime paths below). In Minkowski spacetime, the travelling twin must feel a different history of accelerations from the earthbound twin, even if this just means accelerations of the same size separated by different amounts of time,[28] however "even this role for acceleration can be eliminated in formulations of the twin paradox in curved spacetime, where the twins can fall freely along space-time geodesics between meetings".[7] Relativity of simultaneity[edit] Minkowski diagram of the twin paradox. There is a difference between the trajectories of the twins: the trajectory of the ship is equally divided between two different inertial frames, while the Earth-based twin stays in the same inertial frame. For a moment-by-moment understanding of how the time difference between the twins unfolds, one must understand that in special relativity there is no concept of absolute present. For different inertial frames there are different sets of events that are simultaneous in that frame. This relativity of simultaneity means that switching from one inertial frame to another requires an adjustment in what slice through spacetime counts as the "present". In the spacetime diagram on the right, drawn for the reference frame of the Earth-based twin, that twin's world line coincides with the vertical axis (his position is constant in space, moving only in time). On the first leg of the trip, the second twin moves to the right (black sloped line); and on the second leg, back to the left. Blue lines show the planes of simultaneity for the traveling twin during the first leg of the journey; red lines, during the second leg. Just before turnaround, the traveling twin calculates the age of the Earth-based twin by measuring the interval along the vertical axis from the origin to the upper blue line. Just after turnaround, if he recalculates, he will measure the interval from the origin to the lower red line. In a sense, during the U-turn the plane of simultaneity jumps from blue to red and very quickly sweeps over a large segment of the world line of the Earth-based twin. When one transfers from the outgoing inertial frame to the incoming inertial frame there is a jump discontinuity in the age of the Earth-based twin[22][23][27][29][30] (6.4 years in the example above).
|
|
|
|
實用資訊 | |