设万维读者为首页 广告服务 联系我们 关于万维
简体 繁体 手机版
分类广告
版主:诤友
万维读者网 > 教育学术 > 帖子
范例绝学(Instancology/Absolutology):Definition of
送交者: hare 2015年09月16日08:35:18 于 [教育学术] 发送悄悄话
范例绝学(Instancology/Absolutology):Definition of “Analytical Ontology”


I) Meta-Definition:


0 Symbols: not,"!"; equal to,"="
1 Our World = w
2 Time = t
3 Space = s
4 Variable = x
5 Number = n
6 Function = f() = f(x) = n
7 Logic = "if and only if", condition = "where", true, false,"->","A"




II) Axiom: 
0) The Absolute = A
1) Instance = true


II) Postulate: 


0) w is of The Function: w = f(s,t), if and only if where !(s = null ∩ t =null)
1) If something exists including w itself, it must exist under the condition of (either time is not null or space is not null) AND (cannot  be both nulls), i.e. "∀(w)∃(x)((s != null ∨ t != null) ∩ !(s = null ∩ t = null), f(s,t) = x = Instance)"


III) Theorems (entailed definitions):


0) ∀(Absolute)∃(A)(A ->w)


1)  ∀(Absolute)∃(w)((s != null ∨ t != null) ∩ !(s = null ∩ t = null), Thinking = f(s,t) and Consciousness = f(s,t))


2) Being = f(s,t), where s = null OR t = null AND !(s = null and t = null), if and only if Instance = true 


3) Nothing = f(s,t) = where s != null and t !=null and Instance = null


4) Mental = f(s,t) = where s = null and t != null and Instance = true


5) Physical = f(s,t) = where s != null and t != null and mental != null


(The End) 





0%(0)
0%(0)
标 题 (必选项):
内 容 (选填项):
实用资讯
回国机票$360起 | 商务舱省$200 | 全球最佳航空公司出炉:海航获五星
海外华人福利!在线看陈建斌《三叉戟》热血归回 豪情筑梦 高清免费看 无地区限制