我不這樣認為咧,歡迎反駁 |
送交者: Mushy 2008月09月17日13:17:56 於 [靈機一動] 發送悄悄話 |
回 答: 神秘的無理數 - 挑戰學院派 由 西線晨霧 於 2008-06-24 10:16:03 |
[quote]
現在討論戴狄金有理分劃定義無理數。我所知道的最常用的定義是,當有理分劃的 下組沒有最大數,上組沒有最小數時,約定分劃夾一個數。這個數就是無理數。其 實這個定義也是有缺陷的。首先,所謂夾就是比較大小。在這個數沒定義之前,怎 樣參與和有理數的比較?如果是逐位比較,那麼說明這個數已有定義,不必定義兩 次。還有,沒有無理數的定義,怎樣證明下組沒有最大數,上組沒有最小數的有理 分劃的存在?就算這種分劃存在,如何證明這種分劃存在空隙而能容納一個數?如 果數中只有整數被定義,1和2之間還有空隙嗎?換句話說,如果沒有無理數的事先 定義,就不能證明,下組沒有最大數,上組沒有最小數的有理分劃夾一個數。如果 只定義有理數域,沒有更廣泛的數域,有理數域的非只能是空集。 [quote] 我只想說,樓主的疑問很fundenmental,我也想了很久,最後還是藉助英文資料。我以下用英文,因為參考文獻主要是英文,我華文水平有限。 1. 我所知道的最常用的定義是,當有理分劃的 下組沒有最大數,上組沒有最小數時,約定分劃夾一個數。這個數就是無理數。 Let me restate the definition: A Dedekind cut is a set over Q with these properties: 1. a cut is not empty, neither it is Q. 2. if a rational p belongs to a cut, then any rational q smaller than p belong to the cut as well. 3. if a rational p belongs to a cut, then p < r for some r in the cut. This is from Principle of Mathematical Analysis, by Walter Rudin. 其實這個定義也是有缺陷的。首先,所謂夾就是比較大小。在這個數沒定義之前,怎 樣參與和有理數的比較? we can 比較大小, use inclusion of set: let x,y be cuts and a,b be rationals, then x<y if x is proper subset of y. To allow x,y 參與和有理數a,b的比較, think similiarly: x<a, if a does not belong to x. x>a, if a belongs to x. 如果是逐位比較,那麼說明這個數已有定義,不必定義兩次。 yeah this is true. Because the definition of a decimal representation depends on the archimedean property of R which needs to be defined first. archimedean property of R states that for x and y in R and x positive there exists a positive integer n such that nx > y. this may seem obvious,but it has to be deduced from condition 2 of definition of dedekind cut above. 沒有無理數的定義,怎樣證明下組沒有最大數,上組沒有最小數的有理分劃的存在? I dun know if I answers you question, but I can give an instance of 下組沒有最大數,上組沒有最小數的有理分劃的存在. quoted from the same book as above: let A be the set of all positive rationals p such that p^2 > 2 and B be the set of all positive rationals q such that q^2 < 2. Now I claim that A contains no smallest number and B contains no biggest number. Proof by Infinite Descent: For every rational p, we consider p -(p^2-2)/(p+2)= (2p+2)/(p+2), [1] then q^2 -2 = 2(p^2-2)/(p+2)^2. [2] If p is in A, then q is smaller than p by [1] and belongs to A by [2]. If p is in B, then q is bigger than p by [1] and belongs to B by [2]. 就算這種分劃存在,如何證明這種分劃存在空隙而能容納一個數? I dun know to restate this:這種分劃存在空隙而能容納一個數. the dedekind cut 這種分劃 itself is the real number. the cut of all rationals p^2 < 2 defines what we intuitively know as sqrt(2). It is Q that 存在空隙, so we fill these gaps with sets constructed from Q so that if a set over the field is defined and is bounded above, the sup of the set exists in this field. 如果數中只有整數被定義,1和2之間還有空隙嗎? I only know this construction of natural number, http://en.wikipedia.org/wiki/Natural_number#Constructions_based_on_set_theory If I guessed correctly, 2 is constructed from 1, so 1和2之間沒有空隙. 如果沒有無理數的事先定義,就不能證明,下組沒有最大數,上組沒有最小數的有理分劃夾一個數。 下組沒有最大數,上組沒有最小數的有理分劃exists and is the number itself. That is all I have to say. Well, just treat everything(natural numbers, rationals,reals) as sets and leave the rest to set theorists. 歡迎指教和討論。 謝謝你的耐心 |
|
|
|
|
實用資訊 | |