試解 |
送交者: zhf 2020月07月04日00:38:23 於 [靈機一動] 發送悄悄話 |
回 答: 趣味的數學-383 由 gugeren 於 2020-07-02 22:53:01 |
解:
3: 求2^m的3餘數 2^0, r = 1 2^1, r = 2 2^2, r = 1 循環。所以 2^(2n), r = 1。 2^1000=2^(2(500)), r = 1 被3除之後的餘數=1 5: 求2^m的5餘數 2^0, r = 1 2^1, r = 2 2^2, r = 4 2^3, r = 3 2^4, r = 1 循環。所以 2^(4n), r = 1。 2^1000=2^(4(250)), r = 1 被5除之後的餘數=1 7: 求2^m的7餘數 2^0, r = 1 2^1, r = 2 2^2, r = 4 2^3, r = 1 循環。所以 2^(3n), r = 1。 2^999=2^(3(333)), r = 1 2^1000, r = 2 被7除之後的餘數=2 11: 求2^m的11餘數 2^0, r = 1 2^1, r = 2 2^2, r = 4 2^3, r = 8 ... 2^10, r = 1 循環。所以 2^(10n), r = 1 2^1000 = 2^(10(100)), r = 1 被11除之後的餘數=1 13: 求2^m的13餘數 2^(12n), r = 1 2^(12(83))=2^996, r = 1 2^997, r = 2 2^998, r = 4 2^999, r = 8 2^1000, r = 3 被13除之後的餘數=3 17: 求2^m的17餘數 2^(8n), r = 1 2^1000 = 2^(8(125)), r = 1 被17除之後的餘數=1 19: 求2^m的19餘數 2^(18n), r = 1 2^(18(55))= 2^990, r = 1 2^1000, r = 17 被19除之後的餘數=17 |
|
|
|
實用資訊 | |