设万维读者为首页 广告服务 技术服务 联系我们 关于万维
简体 繁体 手机版
分类广告
版主:阿飞的剑
万维读者网 > 茗香茶语 > 帖子
量子擦除实验说明(部1)小明仔细看
送交者: 职老 2018年02月24日18:21:41 于 [茗香茶语] 发送悄悄话

量子力学里,量子擦除实验quantum eraser experiment)是一种干涉仪实验,它可以用来演示量子纠缠量子互补等等基本理论。本条目所论述的量子擦除实验使用双缝干涉仪来制成干涉图样,这实验有三个步骤[1]

  1. 照射光子束双缝干涉仪,然后确认在探测屏出现了干涉图样。

  2. 观察光子通过的是哪条狭缝,在观察时,必须小心翼翼的不过度搅扰光子的运动[a],然后,证实显示于探测屏的干涉图样已被消毁。这步骤演示出,干涉图样是因为“路径信息”(which way information)的存在而被消毁。

  3. 通过特别程序,可以将路径信息擦除,但也可重新得到干涉图样。另外,证实不论擦除过程的完成时间是在光子被探测之前或之后,都会被重新得到干涉图样。

在干涉仪实验里,干涉图样的可视性与路径信息是两个互补变量,根据互补原理,假若越能分辨路径信息,则干涉图样可视性越低,假若干涉图样可视性越高,则越无法分辨路径信息。这好似无法同时看到硬币的两面。[1]

1982年,物理学者马兰·史库理(Marlan Scully)与凯·德鲁(Kai Drühl)最先提出量子擦除实验的点子,他们表明,假设测得粒子的路径信息,则观察不到干涉图样,不管是否搅扰到粒子,但是,假设能够用某种方法擦除路径信息,则干涉图样又可被观察到[2]。1911年,史库理、柏投·恩格勒(Berthold Englert)与贺柏·沃尔特(Herbert Walther)给出实现这实验的方法[3]。后来,物理学者又设计出很多种不同的量子擦除实验[4][5][6]

量子擦除技术可以用来提升显微镜分辨率[5]


目录

概述编辑

双缝实验里,从光源 a 发射出来的相干光子束,照射在一块刻有两条狭缝 b 和 c 的不透明挡版 S2 。在挡版的后面,摆设了摄影胶卷或某种探测屏 F ,用来纪录到达 F 的任何位置 d 的光波数据。最右边黑白相间的条纹,显示出光束在探测屏 F 的干涉图样。量子力学预测,在双缝实验里,光子被探测到的相对频率曲线图:竖坐标为相对频率,横坐标为光子位置与中心轴的夹角角度。

本条目所论述的双缝量子擦除实验是杨氏双缝实验的一种变版。假设在杨氏双缝实验里,观测光子到底穿过的是哪条狭缝,则光子会因此无法与自己相互干涉。假设整个光束的每一个光子都像这样被观测所通过的狭缝,则先前在探测屏显示出的杨氏双缝实验干涉图案会被消毁。这意味著路径信息与干涉图样可视性是彼此互补的变量。原先,物理学者认为,根据海森堡不确定性原理,在搜集路径信息时,不可避免地搅扰了光子的运动,连带使得干涉图样也被洗掉了[7]:36-39。后来,物理学者又证实,光子与探测路径仪器(标记器)之间的量子纠缠也会造成干涉图样被洗掉,完全不需引用海森堡不确定性原理的机制。这实验结果引出一个特别深奥的问题:互补原理是否比不确定性原理更为基础?[2][5]

在本条目所描述的量子擦除实验里,搜集路径径信息并没有不可逆反地搅扰光子,只是按照光子通过的狭缝将光子贴上标签,稍后,又将这标签擦除。贴上标签的光子不能够与贴上不同标签的自己相互干涉,因为这两种标签相互正交,后果是干涉图样被洗掉。然而贴上标签的光子,若标签又被擦除,则光子又可以与自己相互干涉,后果是杨氏双缝实验的特征干涉图样会被再度显示出来。[1]

本实验的装置在空间方面可以分为两个区域。应用自发参量下转换技术制成一对纠缠光子对,其两个光子会分别移动于这两个区域,彼此不会遭遇到对方。现在,假若移动于其中任意一个区域的光子被搅扰,则由于量子纠缠,移动于另外一个区域的光子会被影响,尽管两个区域可能在空间上相隔很遥远。这是一种涉及到超距作用的现象。在第二区域的探测屏所显示的干涉图样可以被消毁或恢复,完全不需改变在第二区域的实验设施,只需要操控在第一区域移动的纠缠光子;此外关于第二区域的双狭缝,或其他介于发射晶体与探测屏间的实验仪器,在光子通过这双狭缝或实验仪器之前或之后,都可以进行操控。更具体地说,在这实验的第二区域里,假设双狭缝前面被装置了标记仪器,因此干涉现象被消毁(因为明确的路径信息存在),现在,在第一区域进行量子擦除动作,这动作的完成可以有效地擦除路径信息,从而重新展现干涉图样,完全不需改变第二个区域的实验设施。总结:在第一区域发生的量子擦除事件,能够超距地重新展现第二区域的干涉图样。[1]

延迟选择量子擦除实验(delayed choice quantum eraser experiment)是本条目所描述实验的延伸版。它所使用的设备更为复杂与精致,能够演示出更多量子力学的奥秘。在这实验里,在第一区域测量或擦除路径信息的动作可以被延迟至在第二区域光子抵达探测屏之后。本条目所描述实验没有这种功能,只能选择探测器测量的先后次序。尽管如此,仍旧是很有意思的实验。直觉而言,光子的路径信息先被测得,因此干涉图样被消毁,然后又将路径信息擦除,这动作是否能够重新展现干涉图样?为了给出正确答案,这实验必须更仔细地分析论述,而整个实验展示出的物理现象,符合量子力学的预测。[8]

实验步骤编辑

本实验共分为三个阶段。

第一阶段编辑

第一阶段,显示器显示出的符合计数曲线图类似典型的相对频率曲线图,说明存在干涉现象。

应用自发参量下转换机制,照射光子束于偏硼酸钡晶体(beta-barium borate crystal,一种非线性晶体),可以制成很多纠缠光子对,每个纠缠光子对的两个光子各自具有的能量为先前的一半,它们的偏振彼此相互垂直。假若一个是横偏振,则另一个是竖偏振;假若一个是竖偏振,则另一个是横偏振。它们会分别沿著不同路径移动于相隔一段距离的两个区域。在第一个区域,光子Fp会直接被探测器Dp吸收。在第二个区域,光子Fs会通过双狭缝,抵达第二个探测器Ds。假若将偏硼酸钡晶体的入射光子束光强降低到足够暗淡,则可确保光子是以一个一个的方式通过双狭缝。为了只检试纠缠光子对,将两个探测器Dp、Ds符合电路(coincidence circuit)连结在一起。用步进马达来移动探测器Ds,按照指令扫描标靶,所收集到的数据可以制成杨式双缝实验的标准干涉图样,或描述这干涉图样的符合计数曲线图。[1]

第二阶段编辑

第二阶段,符合计数曲线图不同于典型的相对频率曲线图,说明不存在干涉现象。

在第二个区域的不透明板的两条狭缝前面,分别置入光轴方向相互垂直的四分之一波片(quarter-waveplate),分别标记为QWP1、QWP2,这两种四分之一波片将光子原本的平面偏振分别改为左旋圆偏振右旋圆偏振,因此可以将光子贴上左旋圆偏振或右旋圆偏振标签。由于光子Fp与光子Fs纠缠在一起,从光子Fp的偏振信息、光子Fs的标签,可以推断出光子Fs的路径信息。由于左旋圆偏振态与右旋圆偏振态相互垂直,先前显示出的干涉图样会因此销毁殆尽,这可以从符合计数曲线图观察到。[1]

第三阶段编辑

第三阶段,光子Fp先抵达探测器Dp。由于起偏器会吸收很多光子,符合计数约为先前的一半。


0%(0)
0%(0)
标 题 (必选项):
内 容 (选填项):
实用资讯
回国机票$360起 | 商务舱省$200 | 全球最佳航空公司出炉:海航获五星
海外华人福利!在线看陈建斌《三叉戟》热血归回 豪情筑梦 高清免费看 无地区限制
一周点击热帖 更多>>
一周回复热帖
历史上的今天:回复热帖
2017: 朗读:Trump's Inaugural Address
2017: 听歌一定要听最好的歌手唱的某个歌。或
2016: 土豆姐姐:伤感
2016: 我真的快要死了不能陪你们耍多久了。各
2015: 支持民主党的理由
2015: 怎样让猪下跪
2014: 既然都是军干子弟, 一杯咖啡就可以化
2014: 羊肉泡馍好吃吗?还真没吃过,看着不是
2013: 文化还文化,侵略还侵略
2013: 梦男你丫很没用么。论年纪你比乌定年轻