reck 說,‘這5個公理,哪個不是廢話?’
1.等於同量的量彼此相等;
2.等量加等量,其和相等;
3.等量減等量,其差相等;
4.彼此能重合的物體是全等的;
5.整體大於部分。
我認為reck提的很對。 用這五個公理能推出偉大的 euclidian geometry麼? 當然不能。 但邏輯基典不明白這個道理, 以為這幾個公理是一切萬物之原, 是偉大的希臘人的對人類的最偉大貢獻,以為這些廢話(Common Notions)創造了人類的奇蹟。 其實他們沒有了解Euclid的Elements內涵.
要想建立幾何, 還要更多的東西。 所以Euclid 給出了 5 個幾何公理 (postulates , axioms in fact, as well as 23 definitions, 第一卷):
1. Let the following be postulated: to draw a straight line from any point to any point.
2. To produce [extend] a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance [radius].
4. That all right angles are equal to one another.
5. The parallel postulate: That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.
(
1.過兩點能作且只能作一直線;
2.線段(有限直線)可以無限地延長;
3.以任一點為圓心,任意長為半徑,可作一圓;
4.凡是直角都相等;
5.同平面內一條直線和另外兩條直線相交,若在直線同側的兩個內角之和小於180°,則這兩條直線經無限延長後在這一側一定相交)。
從公理和定義, 偉大的歐幾里德幾何誕生了.
with the postulates/common notions/defintions, propositions were developed (of course, there may be holes in the proofs).
|