reck 说,‘这5个公理,哪个不是废话?’
1.等于同量的量彼此相等;
2.等量加等量,其和相等;
3.等量减等量,其差相等;
4.彼此能重合的物体是全等的;
5.整体大于部分。
我认为reck提的很对。 用这五个公理能推出伟大的 euclidian geometry么? 当然不能。 但逻辑基典不明白这个道理, 以为这几个公理是一切万物之原, 是伟大的希腊人的对人类的最伟大贡献,以为这些废话(Common Notions)创造了人类的奇迹。 其实他们没有了解Euclid的Elements内涵.
要想建立几何, 还要更多的东西。 所以Euclid 给出了 5 个几何公理 (postulates , axioms in fact, as well as 23 definitions, 第一卷):
1. Let the following be postulated: to draw a straight line from any point to any point.
2. To produce [extend] a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance [radius].
4. That all right angles are equal to one another.
5. The parallel postulate: That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.
(
1.过两点能作且只能作一直线;
2.线段(有限直线)可以无限地延长;
3.以任一点为圆心,任意长为半径,可作一圆;
4.凡是直角都相等;
5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交)。
从公理和定义, 伟大的欧几里德几何诞生了.
with the postulates/common notions/defintions, propositions were developed (of course, there may be holes in the proofs).
|