z^n-1=0 (1) |
送交者: zhf 2019月12月07日15:15:51 於 [靈機一動] 發送悄悄話 |
回 答: 趣味的數學-197 由 gugeren 於 2019-12-06 13:38:13 |
z^n-1=0 (1) (1)有n個解,都在單位圓上。角度是0(2π/n),1(2π/n),...,(n-1)(2π/n) 寫成指數形式是 zk=e^(ik(2π/n))。k=0,1,2,...(n-1) z^n - 1 = (z-z0)(z-z1)(z-z2)...(z-z(n-1)) (2) 1+z+z^2+...+z^(n-1) = (z-z1)(z-z2)...(z-z(n-1)) 令z=1, n = (1-z1)(1-z2)...(1-z(n-1)) (3) 1-z^k= 1-(cos(k(2π/n))+i sin(k(2π/n)))= 1+2sin^2(k(π/n))-1-i 2sin(k(π/n))cos(k(π/n))= 2sin(k(π/n))(sin(k(π/n))-icos(k(π/n)) |1-z^k|= 2sin(k(π/n)) 代入(3)得 n = 2^(n-1)sin(π/n)*sin(2π/n)*sin(3π/n)*...*sin[(n-1)π]/n) |
|
|
|
|
實用資訊 | |