我不这样认为咧,欢迎反驳
送交者: Mushy 2008月09月17日13:17:56 于 [灵机一动] 发送悄悄话
回 答:神秘的无理数 - 挑战学院派 由 西线晨雾 于2008-06-24 10:16:03
[quote]
现在讨论戴狄金有理分划定义无理数。我所知道的最常用的定义是,当有理分划的
下组没有最大数,上组没有最小数时,约定分划夹一个数。这个数就是无理数。其
实这个定义也是有缺陷的。首先,所谓夹就是比较大小。在这个数没定义之前,怎
样参与和有理数的比较?如果是逐位比较,那么说明这个数已有定义,不必定义两
次。还有,没有无理数的定义,怎样证明下组没有最大数,上组没有最小数的有理
分划的存在?就算这种分划存在,如何证明这种分划存在空隙而能容纳一个数?如
果数中只有整数被定义,1和2之间还有空隙吗?换句话说,如果没有无理数的事先
定义,就不能证明,下组没有最大数,上组没有最小数的有理分划夹一个数。如果
只定义有理数域,没有更广泛的数域,有理数域的非只能是空集。
[quote]
我只想说,楼主的疑问很fundenmental,我也想了很久,最后还是借助英文资料。我以下用英文,因为参考文献主要是英文,我华文水平有限。
1. 我所知道的最常用的定义是,当有理分划的
下组没有最大数,上组没有最小数时,约定分划夹一个数。这个数就是无理数。
Let me restate the definition:
A Dedekind cut is a set over Q with these properties:
1. a cut is not empty, neither it is Q.
2. if a rational p belongs to a cut, then any rational q smaller than p belong to the cut as well.
3. if a rational p belongs to a cut, then p < r for some r in the cut.
This is from Principle of Mathematical Analysis, by Walter Rudin.
其实这个定义也是有缺陷的。首先,所谓夹就是比较大小。在这个数没定义之前,怎
样参与和有理数的比较?
we can 比较大小, use inclusion of set:
let x,y be cuts and a,b be rationals,
then xa, if a belongs to x.
如果是逐位比较,那么说明这个数已有定义,不必定义两次。
yeah this is true. Because the definition of a decimal representation depends on the archimedean property of R which needs to be defined first.
archimedean property of R states that for x and y in R and x positive there exists a positive integer n such that nx > y. this may seem obvious,but it has to be deduced from condition 2 of definition of dedekind cut above.
没有无理数的定义,怎样证明下组没有最大数,上组没有最小数的有理分划的存在?
I dun know if I answers you question, but I can give an instance of 下组没有最大数,上组没有最小数的有理分划的存在.
quoted from the same book as above:
let A be the set of all positive rationals p such that p^2 > 2 and B be the set of all positive rationals q such that q^2 < 2.
Now I claim that A contains no smallest number and B contains no biggest number.
Proof by Infinite Descent:
For every rational p, we consider
p -(p^2-2)/(p+2)= (2p+2)/(p+2), [1]
then
q^2 -2 = 2(p^2-2)/(p+2)^2. [2]
If p is in A, then q is smaller than p by [1] and belongs to A by [2].
If p is in B, then q is bigger than p by [1] and belongs to B by [2].
就算这种分划存在,如何证明这种分划存在空隙而能容纳一个数?
I dun know to restate this:这种分划存在空隙而能容纳一个数.
the dedekind cut 这种分划 itself is the real number.
the cut of all rationals p^2 < 2 defines what we intuitively know as sqrt(2).
It is Q that 存在空隙, so we fill these gaps with sets constructed from Q so that
if a set over the field is defined and is bounded above, the sup of the set exists in this field.
如果数中只有整数被定义,1和2之间还有空隙吗?
I only know this construction of natural number,
http://en.wikipedia.org/wiki/Natural_number#Constructions_based_on_set_theory
If I guessed correctly, 2 is constructed from 1, so 1和2之间没有空隙.
如果没有无理数的事先定义,就不能证明,下组没有最大数,上组没有最小数的有理分划夹一个数。
下组没有最大数,上组没有最小数的有理分划exists and is the number itself.
That is all I have to say. Well, just treat everything(natural numbers, rationals,reals) as sets and leave the rest to set theorists.
欢迎指教和讨论。
谢谢你的耐心
|