玖幺幺启示录:盗亦有道
拉灯这傢伙,居然违反“劫机”这一行的“行规”,他对于人质讲条件根本不感兴趣。只对飞机感兴趣。我记忆玖幺幺之后世界就没发生过成功的劫机了。乘客从此都不相信还有生路,只能拼个“鱼死网破”了。中国有个省份,不是那里的人太勇敢而没有绑票案,而是那里“地无三尺平人无三分银”,抢人家三两银子相当于杀他全家。所以那里的人根本不愿意做人质,所以绑票在哪里是没有可能做成的。
有些在中共国被《糜国之音》洗脑洗破的美国博士天天喊穿补总统派美军去重演“北京六四”镇压BLM。这帮傻屄真相信美国资产阶级是什么“善男信女”似的,不敢开枪似的。其实人家美国资产阶级是不想破坏“政府”这个天下第一大盗的“道”而已。人家美国资产阶级不想美国从此没了“游行示威”,不断积累能量,一旦出手就是“你死我活”的“杀官造反”。有“游行示威”就能在能量还没积累到将美国制度整个烧毁前就泄放掉。矬邓搞了“六四天安门战役”之后就没什么“游行示威”了,不出手则已,一出手就是广东人将武警打得“头破血流”。
这个帖子是踢不醒“民主运动”那帮孬种的啦。都搞过“六四天安门战役”还幻想什么“白衬衫行动黑内裤行动”来个“重返天安门”。
(答案在下边找,不要偷看)
(请将窗口往下移)
(请将窗口往下移)
(请将窗口往下移)
(请将窗口往下移)
(请将窗口往下移)
瘟疫好啊,美国的总统选举投票可以用邮寄投票方式进行了。现在不推广亞伯拉罕·艾達方法(AAM)更待何时?用邮寄方法投票只会使亞伯拉罕·艾達方法(AAM)的成本比平时更低。穿补就是个蠢货,居然还反对那个对于D字头更有利的邮寄投票方法。真是自取灭亡啊。
NOIAO,NOM!NOIAO,NOM!NOIAO,NOM!...
No Opinion Is An Opinion(NOIAO).
No Opinion Matters(NOM).
共和党党员们,穿补应对喇叭流感Trump Flu失败,理应无法连任美国总统了。我给你们免费支一招,或有机会挽狂澜于既倒。那就是所谓so-called的“亞伯拉罕·艾達方法(AAM)”。因为糟·拜燈的名字第一个字母是J,唐老鸭·穿补的名字的第一个字母是D,D<J,所以按照亞伯拉罕·艾達方法(AAM)被发动出来的那些原本对投票选举不感兴趣或对两党候选人都不满意的群众都会投票给唐老鸭·穿补,那么按现在糟·拜燈的这点优势还是会败给唐老鸭·穿补。
共和党党员们,为了我们美国历史上最伟大的总统唐老鸭·穿补能再服务美国四年,完成“使美国再次伟大”的宏愿,快快去向美国人宣传亞伯拉罕·艾達方法(AAM)吧。晚了就追悔莫及了。
以下是对亞伯拉罕·艾達方法(AAM)的解释。
群众应当怎样投票才能够在选举中取得最大利益?
如果两个候选人中只有一个你喜欢的,当然是选那个你喜欢的。这个不用问,现在的人都是这样投票的。
问题来了,如果你对两个候选人都不喜欢或都喜欢,你应当如何投票?现在的人的做法是不对的。他们要么不去投票,要么胡乱选一个,觉得反正无论怎么投票对结果都没影响。
事实上并非没影响,只是对本轮选举没影响而已,对下一轮选举的影响是很大的。现将你对两个候选人都不喜欢时各种不同的投票方法分析如下:
一、不去投票。你在这轮选举不会有任何收益,反正去不去投票最终结果都是得到一个你不喜欢的人当总统。但选举主持人会认为你没意见,下一轮选举就不必关心你怎么想了。
二、胡乱投,随机选一个。你在这轮选举不会有任何收益,反正无论你怎样投票最终结果都是得到一个你不喜欢的人当总统。但选举主持人会认为你还是有意见的,但意见不是很强烈,因为社会上如你一样对两个候选人都不喜欢或都喜欢的人很多,都随机选,按《概率论》来说,两个候选人从你们这群对两个候选人都不喜欢的人那里得到的票应当差不多,最终你们的意见互相抵消,等于基本没意见。
三、选那个名字按字母表顺序在前的。你在这轮选举不会有任何收益,反正无论你怎样投票最终结果都是得到一个你不喜欢的人当总统。但选举主持人会知道你很不满意,因为是你们这群对两个候选人都不喜欢的人决定了那个名字按字母表顺序在前的当了总统。选举主持人会在下一轮选举中推荐一个你满意的人出来竞选,否则又会是一个名字按字母表顺序在前的当了总统,从此以后,名字按字母表顺序在后的人都会因为自己绝对没机会当选而拒绝白费力气出来竞选了。如果选举只有一个候选人,就等价于中国选国家主席的那种“等额选举”了。那样美国也面上无光。
上边说了很多,看起来很复杂。但其实真正做起来一点也不复杂:投票时,如果只有一个是你喜欢的,投那个你喜欢的。如果没有你喜欢的或两个都喜欢,投民主党和共和党候选人里那个名字在字母表上顺序靠前的。
如果将目前不参与投票的那40%的美国人发动四分之一出来按亞伯拉罕·艾達方法(AAM)投票,则决定由谁当美国总统肯定是那些对两个候选人都不满意的群众了。
这个方法,需要你们广泛宣传,让全体美国人都知道其好处,按这个亞伯拉罕·艾達方法(AAM)投票。
以下是用计算机程序语言写出来的亞伯拉罕·艾達方法(AAM),给在计算机方面有兴趣的同学上机模拟。
/*01*/ /* code_002 */
/*02*/ char* vote((char*) candidate[])
/*03*/ {/*0010*/
/*04*/ (char*) well_known_candidate[2];
/*05*/
/*06*/ if (there_is_a_candidate_i_like == TRUE)
/*07*/ return candidate[i_like];
/*08*/ else
/*09*/ {/*0020*/
/*10*/ well_known_candidate[0] =
/*11*/ the_1st_most_well_known(candidate);
/*12*/ well_known_candidate[1] =
/*13*/ the_2nd_most_well_known(candidate);
/*14*/
/*15*/ sort_by_name(well_known_candidate);
/*16*/ return well_known_candidate[0];
/*17*/ }/*0020*/
/*18*/ }/*0010*/
/*********************************************************/
Example:
Suppose there are 10,000 voters. 60% or 6000 do not
like Donald and Joe. And in the remaining 40% or
4000, 55% like Joe, 45% like Donald.
(1) If the 6000 do not go to vote, then Joe gets
4000*55%=2200, Donald gets 4000*45%=1800, Joe wins.
(2) If 15% of the 6000, those are 900, go to vote. But
they pick one randomly. Usually according to the normal
distribution law, Donald or Joe will get approximately
same points. Let's assume Donald gets 467 and Joe gets
433. Then Donald, 1800+467=2267, Joe, 2200+433=2633.
Joe wins.
Even 6000 is a large number, but they will NOT affect
the result because they cancel each other. They do not
matter.
(3) If 15% of the 6000, those are 900, go to vote. They
all pick Donald according to code_002 when they do not
like either. Then Donald gets 1800+900=2700, and Joe
still gets 2200, Donald wins and Joe loses.
No Opinion Is An Opinion(NOIAO).
No Opinion Matters(NOM).
0。假如民主真的不可避免,群众应当怎样投票才能够在选举中取得最大利益
0。假如民主真的不可避免,群众应当怎样投票才能够在选举中取得最大利益
0。假如民主真的不可避免,群众应当怎样投票才能够在选举中取得最大利益
0。假如民主真的不可避免,群众应当怎样投票才能够在选举中取得最大利益
1。亞伯拉罕·艾達方法(AAM) http://bbs.creaders.net/tea/bbsviewer.php?trd_id=1309073
2。鵓鴿方法 http://bbs.creaders.net/tea/bbsviewer.php?btrd_id=4888828&btrd_trd_id=1301593
3。看妖妖之前或之後的作品點此
http://bbs.creaders.net/life/bbsviewer.php?trd_id=1449691
4。看妖妖的附加題點此
http://bbs.creaders.net/iq/bbsviewer.php?trd_id=1362146
東窗集
|