| Poisson distribution |
| 送交者: bagoda 2009月04月08日20:00:54 於 [教育學術] 發送悄悄話 |
| 回 答: 要飯花子: 上午去了個面試 由 要飯花子 於 2009-04-07 15:53:59 |
|
This is a pretty hard problem. I have answer to a simpler problem. I will think about a full answer later.
The simpler problem is: the Calls to the tech support center arrive in a Poisson process with a rate of 20 per hour. What is the probability that there will be more than 3 Calls to the support center in any minute? Poisson distribution with a mean of 20/hr, gives mean=0.3/min. So, to have more than 3 incoming calls within a given minute is: P(x>=4) = 1-P(0)-P(1)-P(2)-P(3) = 0.00002. The Poisson Distribution is: P=mean**(i) e**(-mean)/i! , i =0, 1, 2, 3, 4, ... i=0, p[0]=0.74081837017575, #probability of no calls coming in a min i=1, p[1]=0.222245511052725, #probability of 1 calls coming in a min i=2, p[2]=0.0333368266579087, #probability of 2 calls coming in a min i=3, p[3]=0.00333368266579087, #probability of 3 calls coming in a min i=4, p[4]=0.000250026199934316, #prob. of 4 calls coming in a min. i=5, p[5]=1.50015719960589e-05, #prob. of 5 calls coming in a min. i=6, 7, 8......... odds are very small. all adds up is <0.0000001. NOW THE UNANSWERED PART IS HOW THE EXPONENTIAL DISTRIBUTION WITH MEAN 3MIN PLAY INTO THIS PROBLEM. |
|
![]() |
![]() |
| 實用資訊 | |
|
|
| 一周點擊熱帖 | 更多>> |
| 一周回復熱帖 |
| 歷史上的今天:回復熱帖 |
| 2008: | 清明時節憶同窗 | |
| 2007: | 此地無銀!:鄒宇造謠的具體分析 | |
| 2007: | 1. 2006年高校學科評估(排名)結果 | |
| 2006: | 歐美博士制度下的數理基礎vs美國名校教 | |
| 2006: | 如何在美國參加和主持NIH大型研究項目 | |
| 2005: | 張五常: 思考的方法(上, 中, 下) | |
| 2005: | 幻想與實幹: 留學巴黎18年寫實 | |
| 2004: | 高等學府可以扣押職工私人護照嗎? | |
| 2004: | 我所知道的山林華和克黎利 | |




