设万维读者为首页 广告服务 技术服务 联系我们 关于万维
简体 繁体 手机版
分类广告
版主:
万维读者网 > 灵机一动 > 跟帖
找到一个错:
送交者: gugeren 2023月10月28日09:13:27 于 [灵机一动] 发送悄悄话
回  答: 解: 把90!写成如下矩阵形式: 90, 89, 88, .tda 于 2023-10-27 08:46:35

划去列10,记为9!】

所有的模应该是一致的。这里把90,80,……,10取为9,8,……,1,它们的模是10.

划去行5,记为(49, 48, ......, 41)】

它们的模似乎又是100.

不知道是不是这里出了错?


0%(0)
0%(0)
  把(49, 48, ......, 41)分解成(49,48 - tda 10/28/23 (5334)
    这个没错。错在: - gugeren 10/28/23 (4928)
      90*80*……*10 = 10^9*(9!)->9!->( - tda 10/28/23 (4871)
        我们是利用“同余”的这个性质: - gugeren 10/28/23 (4809)
        10^9*(9!)->9!这是关于模数为10的余数,而不是 - gugeren 10/28/23 (4828)
          以(90,80,70,...,10)为例,就求它的最后两位非 - tda 10/28/23 (4786)
      同余还有一个有趣的性质: - gugeren 10/28/23 (4902)
    我算共有19个0  /无内容 - tda 10/28/23 (5270)
标  题 (必选项):
内  容 (选填项):
实用资讯
回国机票$360起 | 商务舱省$200 | 全球最佳航空公司出炉:海航获五星
海外华人福利!在线看陈建斌《三叉戟》热血归回 豪情筑梦 高清免费看 无地区限制
一周点击热帖 更多>>
一周回复热帖
历史上的今天:回复热帖
2022: 各位,你们不是受高校的“中国共产主义
2020: 趣味的数学-470
2020: 再出一題:請計算中國象棋中將士象/帥
2019: 趣味的数学-128