設萬維讀者為首頁 廣告服務 聯繫我們 關於萬維
簡體 繁體 手機版
分類廣告
版主:
萬維讀者網 > 靈機一動 > 帖子
我也做出來了,不漂亮,不簡潔。
送交者: 零加一中 2016年12月12日12:48:02 於 [靈機一動] 發送悄悄話

為避免打字中大量中英文切換,我用英文寫出。

We first state a theorem. In ∆ABC, if AD (D on BC) bisects A, then AB/AC = AD/CD.

Our problem is this. In ∆ABC, AD and AE trisect A. Here D and E are on BC with the order from left B, D, E, and C. Is it possible that BD = 1, DE = 2, and EC = 4?

BAD = DAE = EAC = a (Given).

AE/AB = 2, AC/AD = 2 (Apply theorem).

Take E’ on AE so that ADE' = ABD.

We get immediately

∆ABD ~ ∆ADE'

 Here “~” means similar (may not be same).

ADE = ABD + a (exterior of ∆ABD).

Because ADE' = ABD,

E’DE = ADE – ADE’ = a.

Look at ∆ABD and ∆DE’E. DAE = E’DE =a. They both have AED.

∆ADE ~ ∆DE'E.

AE/DE = DE/E’E è EE’ = (DE)^2/AE = 4/AE.

Using ∆ABD ~ ∆ADE', we have

EE’ = AE – AE’ = AE – (AD)^2/AB.

Eliminating EE’, using AE/AB = 2,

4 = (AE)^2 – 2(AD)^2.

Similarly, working on ∆ADE and ∆AEC,

16 = (AC)^2 – 2(AE)^2.

Eliminating AE, we have

24 = (AC)^2 – 4(AD)^2 = 0.

原來以為我哪兒出錯了,看來確實無解。

0%(0)
0%(0)
標 題 (必選項):
內 容 (選填項):
實用資訊
回國機票$360起 | 商務艙省$200 | 全球最佳航空公司出爐:海航獲五星
海外華人福利!在線看陳建斌《三叉戟》熱血歸回 豪情築夢 高清免費看 無地區限制
一周點擊熱帖 更多>>
一周回復熱帖
歷史上的今天:回復熱帖
2012: 車五進二:排隊問題解答
2012: 零加一中:工作分工問題
2011: 有一種愛叫做放手,你真的放的開麼?