在中國古代的數學家中,最早對勾股定理進行證明的是三國時期吳國的數學家趙爽。趙爽創製了一幅“勾股圓方圖”,用數形結合的方法,給出了勾股定理的詳細證明。在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間的小正方形邊長為b-a,則面積為(b-a) 2 。於是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化簡後便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 趙爽的這個證明可謂別具匠心,極富創新意識。他用幾何圖形的截、割、拼、補來證明代數式之間的恆等關係,既具嚴密性,又具直觀性,為中國古代以形證數、形數統一、代數和幾何緊密結合、互不可分的獨特風格樹立了一個典範。 以下網址為趙爽的“勾股圓方圖”: http://cimg.163.com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410C.gif 以後的數學家大多繼承了這一風格並且有發展, 只是具體圖形的分合移補略有不同而已。 例如稍後一點的劉徽在證明勾股定理時也是用以形證數的方法,劉徽用了“出入相補法”即剪貼證明法,他把勾股為邊的正方形上的某些區域剪下來(出),移到以弦為邊的正方形的空白區域內(入),結果剛好填滿,完全用圖解法就解決了問題。 以下網址為劉徽的“青朱出入圖”: http://cimg.163.com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCB.gif
|