设万维读者为首页
广告服务
联系我们
关于万维
首
页
新
闻
视
频
博
客
论
坛
分类广告
购
物
版主:
五 味 斋
茗香茶语
天下论坛
竞技沙龙
彩虹之约
摄友部落
诗词歌赋
七荤八素
高山流水
海 二 代
教育学术
笑林之声
健康生活
史地人物
军事天地
跨国婚姻
恋恋风尘
灵机一动
股市财经
加国移民
流行前线
新 大 陆
影视娱乐
焦点房谈
我爱我车
美国移民
登录论坛
用户桌面
论坛排行榜
24小时热帖
一周热帖
一周网友人气排行榜
一周网友灌水排行榜
消除桌面上杯子印迹的绝招
为什么磁感应强度系数μ0与4π而不是2
对业余声乐爱好者,鸿雁是一部优美的教
胡骑来: 初中升高中物理附加题
为什么鱼比肉更容易煮熟?
阿尔法围棋是怎样战胜世界顶尖棋手的(
草原夜色美
答五十肩博 氢原子径向波函数之问
小米和 millet
各位量子力学大侠,有一事相求:氢原子
我把水泵井深问题简化版再简化一下
炎炎夏日吃什么
为什么光线弱的地方会觉得浪漫?
香港早期武侠电影里的配乐为何多为民乐
积分智力题试解 (修改)
大二《数字逻辑》期终考试附加题:
又见兔子
ZT朱清时院士为什么错:现代物理与量子
积分智力题
“微程序”的本质是什么?
算了,告诉你们为何μ0与4π相关吧。如
wtxwtx: 求解方程
还没搞清楚为啥计算机要用晶体振荡器而
阿尔法围棋是怎样战胜世界当今顶尖棋手
水泵井深问题简化版
毕加索画了58遍的画 到底为什么厉害
真实牛皮,我想了下那个“井最深能有多
那个撒尿的高考附加题答案,不要偷看。
[
首页
]
[
上页
]
[
下页
]
[
末页
]
按笔名搜索
所有论坛
五 味 斋
茗香茶语
天下论坛
竞技沙龙
彩虹之约
摄友部落
诗词歌赋
七荤八素
高山流水
海 二 代
教育学术
笑林之声
健康生活
史地人物
军事天地
跨国婚姻
恋恋风尘
灵机一动
股市财经
加国移民
流行前线
新 大 陆
影视娱乐
焦点房谈
我爱我车
美国移民
全部
2026
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
标题/网友
时间
字节
点击
回复
【致空行】:找不到你说的那25到苏联/俄国数学题,
-
gugeren
12/29/21
140
785
2
我得去找,有一个计算机坏了,得重新搜寻,不止25题。
-
空行
12/29/21
0
529
明天就找出有链接。
-
空行
12/29/21
0
526
哈哈哈,严重伤害了希腊人民的感情,我觉得新冠精子的变种不应当
-
酸亦鲜
12/29/21
16442
704
0
21世纪新政21st Century New Deal
-
haxesn_001
12/29/21
136445
781
0
元宇宙系统与政务互动
-
haxesn_001
12/29/21
30496
735
0
心系家國安危,閃耀時代精神 「愛國愛港」提升國民身份認同感和
-
连斩
12/28/21
6590
695
0
【较难】
-
gugeren
12/28/21
158
779
13
改写:
-
gugeren
12/29/21
389
536
我算出的是672个,过程如下:
-
空行
12/29/21
250
516
这个题其实比我在五味出的要容易的多,只是这几天忙于其他事。
-
空行
12/29/21
0
489
那就把你的题拿上来,让大家烧烧脑?
-
gugeren
12/29/21
0
503
我算的:其因数中,有多少个不同的完全平方数?
-
tda
12/29/21
1975
552
是。找到规律这题并不太难。
-
gugeren
12/29/21
0
495
2^4中的因数有多少完全平方数?
-
tda
12/29/21
0
517
4,4,16?还是4,16
-
tda
12/29/21
0
509
见上面的【改写】
-
gugeren
12/29/21
0
508
是指該數的所有因子中有多少完全平方數?
-
空行
12/28/21
0
506
也算是一道组合题吧。
-
gugeren
12/28/21
0
510
指9个阶乘的乘积中的因数构成的所有平方数。
-
gugeren
12/28/21
0
511
明确题意就好办了。
-
空行
12/28/21
0
507
一道简单的几何计算题,不烧脑
-
gugeren
12/28/21
445
748
4
以D为坐标零点,两圆的方程分别是:
-
空行
12/28/21
113
517
是!
-
gugeren
12/28/21
0
489
推导枯燥而又万能的偷懒解析几何的结果:16/5。
-
空行
12/28/21
0
497
以D为坐标零点,两圆的方程分别是:
-
空行
12/28/21
365
508
3022年高考物理附加题:
-
酸亦鲜
12/28/21
16586
702
0
呵呵,新野啊,又是个吹牛的
-
酸亦鲜
12/28/21
18561
836
0
呵呵
-
酸亦鲜
12/28/21
614
627
0
元宇宙 Metaverse
-
haxesn_001
12/27/21
31756
623
0
这个答案是否缺少括弧?原答案是几千的数量级。
-
gugeren
12/27/21
0
1116
1
是回下面“零加一中”博的,不知为何跑上面来了。
-
gugeren
12/27/21
0
459
【组合题-1】15个字母:
-
gugeren
12/27/21
336
625
3
我是这样做的。把字母串的位置分成三个区
-
tda
12/28/21
3607
513
这个正解!
-
gugeren
12/28/21
0
435
用容斥原理
-
零加一中
12/27/21
371
486
改正:【一道烧脑的组合题】
-
gugeren
12/27/21
538
693
8
建议:思考问题是愉悦的,只会使闹愉快不会烧脑。
-
空行
12/27/21
0
450
呵呵,烧脑就是一种愉快,可以活跃生活,不得失智症。
-
gugeren
12/27/21
0
438
只会使脑愉快。
-
空行
12/27/21
0
429
8181?
-
tda
12/27/21
0
446
8181对。请说过程。
-
gugeren
12/27/21
0
458
n-99q=q+r。q+q被11整除等价于n被11整除。最小
-
tda
12/27/21
68
452
正确!
-
gugeren
12/27/21
0
426
89981?
-
tda
12/27/21
0
418
【一道烧脑的组合题】
-
gugeren
12/27/21
171
533
1
纠正如上。这贴缺少限制!
-
gugeren
12/27/21
0
410
方知《骗子怕什么?》乃普遍规律
-
酸亦鲜
12/27/21
20003
613
0
请教那些常上教堂的同学一个问题:
-
酸亦鲜
12/27/21
16354
551
0
【脑子急转弯】几何概率
-
gugeren
12/26/21
131
620
12
一般三角形也是这个结论,而且其中任一三角形不需要达到最大时才
-
空行
12/27/21
110
388
我没注意到正三角形条件而得出对结论对一般三角形成立,是更正稍
-
空行
12/27/21
49
370
首先你的第三个三角形应该是BCP。这个题很简单,重心划分
-
空行
12/27/21
233
405
不需那么复杂。所提的3个三角形面积分别是最大
-
gugeren
12/27/21
86
387
仔细看原题,哪来的O点。
-
空行
12/27/21
0
378
1/3?
-
tda
12/26/21
0
413
同时大于其它两个三角形的面积
-
tda
12/26/21
0
418
1/3对。我做了半天,一查答案,非常简单。
-
gugeren
12/26/21
0
419
两个斜边中线上半部的三角形的交集
-
tda
12/26/21
0
401
1/4?.
-
tda
12/26/21
0
415
不是
-
gugeren
12/26/21
0
456
我是这样做的:AB是底边,如果P在中位线上,ABP面积是其它
-
tda
12/26/21
134
445
服气博士
-
酸亦鲜
12/26/21
23338
613
0
证明14个整数的4次方和不可能是1599(修改重贴
-
tda
12/25/21
10531
679
2
抓在3^4的个数,抓得很准!证明很漂亮!
-
gugeren
12/25/21
0
449
谢谢提醒,把3^4移到等号右端
-
tda
12/25/21
0
429
用模为2证明“14个4次方”较“除三法”简单些
-
gugeren
12/25/21
2019
615
1
这个方法的检验工作太繁琐!
-
gugeren
12/25/21
0
424
若云:小事与随感(1)
-
若云
12/25/21
8651
596
0
我认为1937年“南京突围”中广东杂牌66军军长叶肇并没有被
-
酸亦鲜
12/25/21
18623
676
0
估计吧,刘亚洲最终会
-
酸亦鲜
12/25/21
22181
625
0
21世纪新政21st Century New Deal(定稿
-
haxesn_001
12/25/21
59803
596
0
元宇宙 体制 Metaverse system
-
haxesn_001
12/25/21
31265
612
0
元宇宙体制Meta cosmic system(修正稿)
-
haxesn_001
12/23/21
27964
634
0
由“除三法”引出同余数为2的“奇偶法”:
-
gugeren
12/23/21
826
694
3
利用同余数解这题,本人的几点感想:
-
gugeren
12/24/21
956
436
利用同余方程解这个题,似乎并不合适,因为变量太多。
-
gugeren
12/23/21
0
461
做法有错!
-
gugeren
12/23/21
0
454
卖油郎独占花魁计划
-
酸亦鲜
12/23/21
19168
703
0
证明:14个整数的4次方和不可能是1599
-
tda
12/22/21
3915
720
10
发现一个问题,(1)中x3的系数是80,不是3的倍数。
-
零加一中
12/23/21
0
473
我看错了。x3的系数是80,我脑海里还是81
-
tda
12/23/21
0
476
看上去像80乘3(80x3),哈哈。
-
空行
12/23/21
0
451
原先我在这种思路上用的是五的倍数,因1599-14是五的倍数
-
空行
12/23/21
66
451
其实第二个方程应该是
-
空行
12/23/21
0
467
小于等于14,少了就补0。
-
空行
12/23/21
0
453
我一开始也是这个思路,在[-6,6]选数,但考虑到小于14补
-
空行
12/23/21
72
456
这种解法要排除6^4。1599-6^4-13=290,也不能
-
tda
12/23/21
29
484
从这个解答和我的解答看来,3的整除性质确实是关键。
-
零加一中
12/23/21
46
492
是的。3的整除性质是关键。要排除6^4
-
tda
12/23/21
0
458
我想这是14个4次方数之和的正解
-
零加一中
12/22/21
9772
749
15
其实,同余数可取大于2的任何正整数,取3较容易处理而已
-
gugeren
12/23/21
0
426
“除三法”:剩余1、2、4和5的4次方,移项:
-
gugeren
12/23/21
313
485
移项,以5和1的4次方为一边,1599减去2和4的
-
gugeren
12/23/21
291
454
我觉得我的答案已经完备了。总结如下:
-
零加一中
12/23/21
178
467
你没有看到:由于1599能被3整除,故实现除去
-
gugeren
12/23/21
131
443
一个和两个5的4次方在解答里。
-
零加一中
12/24/21
109
418
零并没有使得问题复杂,只要能做到少于14个整数,就用0补齐,
-
空行
12/22/21
48
480
这里的“除三性”实质是同余方程。似乎太繁琐?
-
gugeren
12/22/21
0
466
我已经尽了最大努力,欢迎改进。
-
零加一中
12/22/21
0
466
打了一大篇,却没有显示。
-
gugeren
12/23/21
0
454
因1599被3除无余数,故所有3的倍数在这个和式中都不考虑
-
gugeren
12/23/21
0
461
再考虑“奇数个数的奇数,与奇数个数的偶数”这个事实
-
gugeren
12/23/21
0
452
由于0在总和式中不起任何作用,故0的4次方不需考虑
-
gugeren
12/23/21
0
448
改:“奇数个数的奇数,与奇数个数的偶数之和”
-
gugeren
12/23/21
0
463
如:6和3的4次方,4、5、2或1的4次方的3的倍数
-
gugeren
12/23/21
0
469
“凶手”还是“杀手”
-
酸亦鲜
12/22/21
18868
566
0
真的准备牌吗?
-
酸亦鲜
12/22/21
20685
661
0
元宇宙体制及终端-0016
-
haxesn_001
12/21/21
27907
609
0
守恒律
-
jingchen
12/21/21
583
606
0
根据新提出的太阳系{N,n}量子力学结构,帕克探测器最终将飞
-
五十肩
12/20/21
736
687
1
太阳里有生命,等离子体状的。
-
空行
12/20/21
0
447
ZT:探测器首次进入太阳大气层https://tech.cr
-
五十肩
12/20/21
466
557
0
【14个整数的4次方】较详解:
-
gugeren
12/19/21
2849
767
4
【改正】:
-
gugeren
12/20/21
511
464
解多元方程的主要方法,就是消元,即减少未知数的个数:
-
gugeren
12/20/21
448
492
如果一定要套用一个经典模式,线性规划可能适合此题?
-
gugeren
12/21/21
0
435
改:
-
gugeren
12/19/21
439
505
用数学归纳法证明电影院找零问题
-
tda
12/19/21
8254
725
1
奇数个奇数+奇数个偶数 好像是很有帮助
-
零加一中
12/19/21
51
499
能破案吗?他爹是谁啊。比王粑丹的爹妈利害多了。
-
酸亦鲜
12/19/21
19669
663
0
又是《奥数教程》-- 不定方程
-
零加一中
12/18/21
1964
814
27
对于第一题,能选的数在区间[-6, 6]共13个,这已告诉
-
空行
12/18/21
139
536
第二个9n+4的问题是尾数问题,任何数都可以是三的倍数加上
-
空行
12/18/21
105
553
正确,想套用这个思路做14个4次方,未果,数字太多了。
-
零加一中
12/19/21
0
505
不是一个思路。首先7^4>1599,那么只能在[-6,6]
-
空行
12/19/21
306
512
理论上,如果14个数中取6个可重复的数,其种数有:
-
gugeren
12/19/21
425
509
你把组合变成排列。再者也不需要这样,从最大数逐步
-
空行
12/19/21
59
503
不管是排列还是组合,总要把所有的可能性都
-
gugeren
12/19/21
75
486
这个证法,需要考虑10种情况,六个余数:1,2,3,6,7
-
gugeren
12/18/21
0
519
无需那么复杂,任何数都可表达成3n+r,n是任一整数,r是
-
空行
12/18/21
220
515
从0,1,8可重复地任意取三个数共有10种组合。
-
空行
12/18/21
0
518
和8,即交叉现象!
-
gugeren
12/18/21
0
504
但余数中没有4。
-
gugeren
12/18/21
0
512
由于是4次方,负数与正数是一样的结果。
-
gugeren
12/18/21
0
523
抓住奇数这个关键;偶数是次要的:因为1599是奇数!
-
gugeren
12/18/21
0
532
无需那么复杂,当知道不能用14个不同数的四次方相加得出后,
-
空行
12/18/21
100
507
过程就省略了:如何省略?14个数,全部列举出来,
-
gugeren
12/18/21
0
529
首先1599-6^4=303,最多只能一个6(或-6),再
-
空行
12/20/21
572
471
即使仅取1-6这六个数,也有“14中取6”取法,用
-
gugeren
12/18/21
0
504
组合定理算算,是多少?
-
gugeren
12/18/21
0
501
因此,只要考虑1个5的4次方,和2个5的4次方两大情况。
-
gugeren
12/18/21
0
518
其中1个5的4次方时,分支较多些,约6-7种情况;
-
gugeren
12/18/21
0
511
2个5的4次方则较简单,仅2种情况。
-
gugeren
12/18/21
0
512
总计不到10种情况而已。
-
gugeren
12/18/21
0
514
利用复数的三角形式,证明14个复数的虚部不可能为0.
-
gugeren
12/18/21
0
517
这条路似乎走不通。
-
gugeren
12/18/21
0
512
用最笨的枚举法。显然,这14个数的取值原则是:
-
gugeren
12/18/21
0
522
1】取奇数个奇数:因为
-
gugeren
12/18/21
497
529
[
首页
]
[
上页
]
[
下页
]
[
末页
]
第
21
页
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
跳转到
页
相 关 链 接